


Aditya Shastry, K., & Sanjay, H.A. (2023). Artificial intelligence...


on Alzheimer's disease detection: all errors are equal, but deletions are more equal than others. *arXiv preprint arXiv:1904.01684.*


Burke, E., Gunstad, J., Pavlenko, O., & Hamrick, P. (2023). Distinguishable features of spontaneous speech in Alzheimer’s


Choubey, H., Arya, V., Singh, J., Choudhary, N., Sharma, A., & Singh,


Intelligence, speech and language processing approaches to monitoring Alzheimer’s disease: A systematic review. *Journal of Alzheimer’s Disease, 78*(4), 1547-1574.


versus CLAN programs. Poster presented at the Denman Undergraduate Research Forum, OSU, Columbus, OH.


Garcia-Rodriguez, J. (2022, October). Deep learning-based dementia


Li, Y., Lin, Y., Ding, H., & Li, C. (2019). Speech databases for mental
disorders: A systematic review. *General Psychiatry, 32*(3).


Mestach, M., Hartsuiker, R. J., & Pistono, A. (2024). Can we track the progression of Alzheimer's Disease via lexical-semantic variables
in connected speech?. Journal of Neurolinguistics, 70, 101189.


Pérez-Toro, P. A. (2021). Speech and natural language processing for the assessment of customer satisfaction and neuro-degenerative...


Popat, R., & Ive, J. Embracing the uncertainty in human-machine collaboration to support clinical decision making for mental health conditions. *Frontiers in Digital Health, 5,* 1188338.


Paulo.


The Ohio State University.


Tripathi, T., & Kumar, R. (2024). ML-based quantitative analysis of


Warnita, T., Makiuchi, M. R., Inoue, N., Shinoda, K., Yoshimura, M.,


