Investigating changes in connected speech in nonfluent/agrammatic primary progressive aphasia following script training

Karinne Berstis¹, Stephanie M. Grasso¹, Kristin M. Schaffer¹, Willa R. Keegan-Rodewald¹, H. Isabel Hubbard², Maya L. Henry¹
University of Texas at Austin¹; University of Kentucky²
Introduction

- **Primary progressive aphasia (PPA)**
 - progressive deterioration of speech and language

- **Nonfluent/agrammatic PPA (nfvPPA) consensus criteria** *(Gorno-Tempini, et al. 2011)*
 - characterized by
 - agrammatism in language production
 - motor speech impairment (apraxia of speech with or without dysarthria)
 - deficits can co-occur to varying degrees or appear in relative isolation
 - primary progressive apraxia of speech (PPAOS) *(Josephs, et al. 2012)*
 - progressive agrammatic aphasia (PPA-G) *(Thompson & Mack, 2014)*

- Limited treatment research in nfvPPA addressing linguistic and motoric deficits explicitly
Introduction

• Interventions from stroke-induced aphasia and AOS literature (Ali et al., 2018; Cherney et al., 2008, 2014; Cherney & Halper, 2008; Costello-Yacono & Balasubramanian, 2018; Goldberg et al., 2012; Grasso et al., 2019; Moss, 2009; Szabo et al., 2014; Youmans et al., 2005, 2011)
 • script training has the potential to address linguistic and motoric deficits in nfvPPA

• Video-Implemented Script Training for Aphasia (VISTA) has been shown to be effective for individuals with nfvPPA (Henry et al., 2018)
 • results indicated significant improvement in accurate script production at post-treatment
 • improvements in intelligibility
 • reduction of grammatical errors
Introduction

• Analysis of connected speech allows for evaluation of speech in contexts that more closely resemble real-world communicative conditions
 • time-intensive
 • required expertise

• Computerized Language ANalysis (CLAN) (MacWhinney, 2000)
 • Quantitative Production Analysis (Saffran et al., 1989)
 • c-QPA (Fromm et al., 2020)
 • Northwestern Narrative Language Analysis (Thompson, 2013)
 • c-NNLA (Fromm et al., 2020b)

• Script-training studies have examined a handful of measures of connected speech beyond accuracy of scripted content
 • speech rate (Ali et al., 2018; Cherney et al., 2008, 2014; Cherney & Halper, 2008; Costello-Yacono & Balasubramanian, 2018; Goldberg et al., 2012; Moss, 2009; Szabo et al., 2014; Youmans et al., 2005, 2011)
 • intelligibility (Grasso et al., 2019; Henry et al., 2018)
 • disfluencies (Goldberg et al., 2012; Youmans et al., 2005)
 • % different words produced (Fridriksson et al., 2012)
 • number of grammatical errors per 100 words, % words with grammatical morphemes, subject-verb-object structure production (Grasso et al., 2019; Henry et al., 2018; Goldberg et al., 2012; Costello-Yacono & Balasubramanian, 2018)
Introduction

• We aimed to extend the findings of Henry et al., 2018 by investigating additional treatment-sensitive outcome measures in a larger sample
 • speech fluency
 • grammar
 • informativeness

• We predicted:
 • trained script topics would show a significant difference from pre- to post-treatment
 • changes would differ significantly between trained and untrained script topics from pre- to post-treatment with trained topics demonstrating greater change
 • potential for generalization to untrained topics at the individual level
Participants

- 20 individuals (10 from Henry et al., 2018) meeting 2011 consensus criteria for nfvPPA
- all participants demonstrated motor speech impairment
- 14 demonstrated impaired expressive grammar on standardized testing and in connected speech

Demographics and Speech/Language and Cognition Scores at Pre-Treatment

<table>
<thead>
<tr>
<th></th>
<th>mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>68.45 (5.8)</td>
</tr>
<tr>
<td>Sex</td>
<td>12 female, 8 male</td>
</tr>
<tr>
<td>Years of Education</td>
<td>16.65 (2.6)</td>
</tr>
<tr>
<td>Handedness</td>
<td>19 right, 1 left</td>
</tr>
<tr>
<td>Speech, Language and Cognition</td>
<td></td>
</tr>
<tr>
<td>Mini-Mental State Examination (30)</td>
<td>27.3 (2.4)</td>
</tr>
<tr>
<td>Western Aphasia Battery AQ (100)</td>
<td>86.42 (9.0)</td>
</tr>
<tr>
<td>PPVT-short (16)</td>
<td>14.78 (2.0)</td>
</tr>
<tr>
<td>AOS rating(^a) (0=none - 7=profound)</td>
<td>3.2 (1.2)</td>
</tr>
<tr>
<td>Dysarthria rating(^a) (0=none - 7=profound)</td>
<td>1.85 (1.7)</td>
</tr>
<tr>
<td>Northwestern Anagram Test (%)</td>
<td>64.39 (21.8)</td>
</tr>
</tbody>
</table>

\(^a\) from Wertz et al. (1984); AQ = Aphasia Quotient, PPVT = Peabody Picture Vocabulary Test, AOS = Apraxia of Speech
Methods

- Participants were treated using VISTA
 - six individualized scripts were developed for each participant in a collaborative process
 - four scripts entered treatment one at a time; two remained untrained
 - scripts were balanced for linguistic measures of grammar and complexity
 - speech samples collected pre-treatment informed the length, complexity, and rate of the scripts
 - Cat Rescue picture description
 - Grandfather Passage reading
 - speech in response to open-ended questions
 - scripts were treated in twice weekly sessions with a clinician
 - video stimuli were created for the scripts
 - homework consisted of unison speech production practice (speech entrainment, Fridriksson et al., 2012) for 30 minutes/day with video of their script

Example Scripts from 2 Participants

Dancing
I like to dance a lot. I memorize many routines. My husband and I do competitive country western dancing. We do eight different dances.
(66 wpm)

Primary Progressive Aphasia
I have primary progressive aphasia, which is a speech problem caused by tau protein in the brain. My speech is no longer fluid or reflexive. Words with more than two syllables are difficult for me. I have to think about what to say before speaking. Please be patient and let me have extra time to talk.
(87 wpm)
• Probes eliciting responses to script topics were conducted twice pre-treatment and post-treatment

Methods

Pre-TX Probe for script topic: Stocks
Clinician: “Tell me about stocks.”
Participant: “I been uh working on stocks for twenty years. Need...uh need some money for the stocks. Bif...uh dih...up...uh deposit for...uh...posit...uh back and forth you know. But uh...”

Post-TX Probe for script topic: Stocks
Clinician: “Tell me about stocks.”
Participant: “I been uh purchase stocks for two decades. I want dividends there four percent or higher. I want uh talk to my stock broker every day which stocks to buy. I wait for my stock broker’s report could make a decision. Are you interested in the stock market?”
Methods

• Responses to script probes were transcribed and coded using CHAT (Codes for the Human Analysis of Talk, MacWhinney, 2000) & CLAN
 • trained undergraduate and graduate research assistants blinded to timepoint
 • reliability conducted on one time point for each participant
 • coding in CLAN by trained graduate research assistant

• Transcriptions were analyzed using CLAN for:
 • mean length of utterance in morphemes (MLUm)
 (Nobis-Bosh et al., 2011; increase in script-related morphemes: Cherney et al., 2008; Cherney and Halper 2008)
 • words per minute (WPM)
 (Ali et al., 2018; Cherney et al., 2008, 2014; Cherney & Halper, 2008; Costello-Yacono & Balasubramanian, 2018; Goldberg et al., 2012; Moss, 2009; Szabo et al., 2014; Youmans et al., 2005, 2011)
 • fluency disruptions per hundred words* (Goldberg et al., 2012; Youmans et al., 2005)
 • proportion of open to closed class words
 (Ash et al., 2010; Thompson et al., 1997; Wilson et al., 2010; Nobis-Bosh et al., 2011)
 • propositional idea density
 (stroke-induced nonfluent aphasia: Bryant et al., 2013; Ferguson et al., 2013; Fromm et al., 2016; Ulatowska et al., 1981, 1983; distinguishing between PPA subtypes: Vander Woude, 2017)
 • grammatical complexity index
 (improved production of grammatical morphemes: Cherney et al, 2008; Cherney & Halper, 2008; Goldberg et al., 2012; production of more SVO structures: Costello-Yacono & Balasubramanian, 2018)

• Percent correct intelligible scripted words

* Indicates measures which require additional coding beyond transcription in CLAN
Methods

• For each measure, data for each script for two observations at each time point from pre-treatment and post-treatment were used in the analysis

• A series of mixed-effects linear regression models with a fixed effect of timepoint and a random intercept for participant
 • to infer specificity of observed training effects
 • mixed-effects linear regression models with an interaction term of time (pre and post-treatment) and condition (trained and untrained) and a random intercept for participant were performed
 • trained script topics assessed via one-tailed tests
 • untrained script topics assessed via two-tailed tests
Fixed Effect of Time on Script Accuracy and Interaction of Time and Training Condition

![Graphs showing the effect of time on script accuracy for trained and untrained topics.](image-url)
Fixed Effect of Time on Measures for Trained Topics

- **Words per Minute**
 - Pre: 55
 - Post: 70

- **Fluency Disruptions per 100 Words**
 - Pre: 25
 - Post: 15

- **MLU in morphemes**
 - Pre: 11
 - Post: 12

- **Grammatical Complexity Index**
 - Pre: 0.07
 - Post: 0.09

- **Proportion of Open to Closed Class Words**
 - Pre: 0.44
 - Post: 0.46

- **Propositional Density**
 - Pre: 0.46
 - Post: 0.48
Fixed Effect of Time on Measures for Untrained Topics

- Words per Minute
- Fluency Disruptions per 100 Words
- MLU in morphemes
- Grammatical Complexity Index
- Proportion of Open to Closed Class Words
- Propositional Density
Interactions of Time and Training Condition

Words Per Minute
- Pre: 55
- Post: 65
- Trained: Red
- Untrained: Blue

Fluency Disruptions per 100 Words
- Pre: 20
- Post: 15
- Trained: Red
- Untrained: Blue

MLU in morphemes
- Pre: 10
- Post: 12
- Trained: Red
- Untrained: Blue

Proportion of Open to Closed Class Words
- Pre: 0.9
- Post: 1.1
- Trained: Red
- Untrained: Blue

Grammatical Complexity
- Pre: 0.07
- Post: 0.09
- Trained: Red
- Untrained: Blue

Note. Each model includes a random intercept for participant. The y axis presents fitted values from the linear mixed effects model. Standard error is shown in shaded color along the fitted regression line.
Discussion

• Complementing previous findings (Henry et al., 2018), we found improvements for trained topics on measures examining:
 • grammar (grammatical complexity, MLU\textsubscript{m}, proportion of open to closed class words)
 • speech fluency (fluency disruptions)
 • speech rate (WPM)

• Script training has the potential to yield improvements for individuals who present with deficits in grammar and/or motor speech (i.e., apraxia of speech)

• Small numerical improvements were observed for untrained topics on our outcome measures
 • not statistically significant
 • variable numerical improvements at individual level
 • suggests greatest benefit of script training is observed for practiced material

• Relatively automated calculation of connected speech measures which were sensitive to treatment in this population hold potential for application in clinical settings
Future Directions

• Examine potential differential effects for individuals with relatively isolated deficits (motor speech vs. agrammatism) versus mixed phenotypes

• Examine whether treatment-induced improvements on relevant outcome measures generalize to other connected speech tasks

• Evaluate relatively automated analysis methods in conjunction with automatic speech recognition to further reduce time-demands

• Employ acoustic analysis to further inform treatment effects
Next Step: Acoustic Analyses

• Articulatory and prosodic metrics differentiate between nfvPPA and logopenic PPA in connected speech samples *(Haley et al., 2021)*

• Speech timing measures show a significant and specific effect of treatment for trained topics
 • syllables per second of phonated time (articulation rate)
 • mean time between syllable onsets
 • mean pause duration
 • speech-to-pause ratio
This work was supported by funding from the following source:
NIDCD R01DC016291