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Abstract
We uncover an underlying bias present in the audio recordings
produced from the picture description task of the Pitt corpus,
the largest publicly accessible database for Alzheimer’s Disease
(AD) detection research. Even by solely utilizing the silent seg-
ments of these audio recordings, we achieve nearly 100% accu-
racy in AD detection. However, employing the same methods to
other datasets and preprocessed Pitt recordings results in typical
levels (approximately 80%) of AD detection accuracy. These
results demonstrate a Clever Hans effect in AD detection on
the Pitt corpus. Our findings emphasize the crucial importance
of maintaining vigilance regarding inherent biases in datasets
utilized for training deep learning models, and highlight the ne-
cessity for a better understanding of the models’ performance.
Index Terms: Alzheimer’s disease detection, spurious features,
bias, Clever Hans effect

1. Introduction
Alzheimer’s Disease (AD), the most common cause of demen-
tia, is a neurodegenerative disease that worsens over time and
causes irreversible damage to the brain, manifested by a per-
sistent deterioration of an individual’s cognitive and functional
abilities, including language, memory, attention, and executive
function [1].

In recent years, researchers have achieved promising results
in utilizing deep-learning models and an end-to-end approach
for the automatic detection of AD through speech. However,
the robustness of these models have not been thoroughly tested,
primarily due to the scarcity of large and diverse datasets.

In this paper, we reveal an inherent bias present in the au-
dio recordings produced from the picture description task of the
Pitt corpus from DementiaBank, the largest publicly accessible
database for AD detection research. Remarkably, even by ex-
clusively utilizing the silent segments of these audio recordings,
we achieve nearly 100% accuracy in AD detection. As far as we
are aware, this bias has not been reported in the literature.

We present this finding to draw researchers’ attention to
the impact of bias in the dataset, and advocate for more effort
in studying the robustness and explainability of deep-learning
models in automatic AD detection.

2. Related work
2.1. The Pitt corpus
The Pitt corpus [2] is a widely used subset of DementiaBank.
It was collected over a longitudinal period, encompassing 104
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Figure 1: The picture of “Cookie Theft”, adopted from Boston
Diagnostic Aphasia Examination.

elderly controls, 208 individuals with probable or possible AD,
and 85 participants with unknown diagnoses. Responses to four
language tasks were recorded, including one task of describ-
ing the content of the Cookie Theft picture for all participants,
which was originally designed for the Boston Diagnostic Apha-
sia Examination [3] (as shown in Figure 1), and three tasks of
verbal fluency, sentence construction and story recall for AD
participants only. For picture description task, there are 306
AD speech samples, 243 Healthy Controls (HC) speech sam-
ples, and due to the interference of the recording environment,
these speech samples contain noise.

2.2. Automatic detection of AD through speech
Many researchers have utilized the Pitt corpus for AD detection
studies. As of now, according to Google Scholar, this dataset
has been cited in 543 papers, and the citation count is increasing
year by year.

Table 1 presents some results of previous studies using fea-
tures extracted from the original, non-denoised recordings of
the Pitt corpus. For example, Han et al. [4] utilized a miniature
version of the Xception network [5] to develop a deep learn-
ing model classifying AD and HC based on original speech se-
lected from the Pitt corpus using log-mel spectrogram features,
achieving an accuracy of 94.2%.

The Pitt corpus has been used for AD detection chal-
Table 1: Some results of previous studies using features ex-
tracted from the original, non-denoised recordings of the Pitt
corpus.

References Speech from Pitt Results(%)

Han et al. [4] 217 AD, 242 HC 94.2 Accuracy
Ammar et al. [6] 43 AD, 43 HC 91 F-measure
Zargarbashi et al. [7] 255 AD, 233 HC 83.6 Accuracy
Fraser et al. [8] 240 AD, 233 HC 81.92 Accuracy
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Table 2: The accuracy of previous studies using only audio
recordings from challenge datasets for AD detection.

References Dataset Accuracy(%)

Mei et al. [11] ADReSS 79.2
Koo et al. [12] ADReSS 72.9

Gauder et al. [13] ADReSSo 78.9
Chen et al. [14] ADReSSo 77.1

lenges at international conferences, including Interspeech 2020
(ADReSS) [9] and Interspeech 2021 (ADReSSo) [10]. In these
challenges, the original recordings of the Pitt corpus underwent
denoising and normalization process to create training and test
data. Table 2 presents the accuracy of previous studies using
only audio recordings from challenge datasets for AD detec-
tion. As we can see, compared to the original, non-denoised
data, the AD detection accuracy on the preprocessed data from
these challenges was notably lower.

The performance gap between using the original and pre-
processed Pitt corpus may be attributed to two potential reasons.
One is the improvement of the model’s capability, and the other
is the impact of spurious features present in the original speech
data, i.e., the Clever Hans effect.

2.3. The clever hans effect
During the optimization process, models may exploit spurious
correlations in the training data, resulting in seemingly high-
performance metrics, a phenomenon known as the Clever Hans
effect [15]. The Clever Hans refers to a horse that was believed
to perform arithmetic and other intellectual activities. Subse-
quent investigations revealed that the horse did not actually ex-
ecute these intellectual tasks. Instead, it responded to involun-
tary cues in the body language of its human trainer, of which
the human trainer was entirely unaware.

The Clever Hans effect is frequently observed in the context
of supervised classifiers. Several machine learning problems
have illustrated the effect. Arjovsky et al. [16] trained a convo-
lutional neural network designed to classify camels and cows.
After experimental analysis, it was discovered that the neural
network had successfully minimized its training error through a
simple cheat: categorizing green landscapes as cows and beige
landscapes as camels. Borah et al. [17] mentioned Clever Hans
behavior in high-performance neural translationese classifiers,
where BERT-based classifiers capitalize on spurious correla-
tions, in particular topic information, between data and target
classification labels, rather than genuine translationese signals.
Chettri et al. [18] proposed that any visible pattern difference,
such as the distribution of silence, between bonafide and spoof
classes can introduce biases in voice spoofing detection, con-
sequently influencing model decisions. Similar effect has also
been demonstrated in medical contexts. Wallis et al. [19] ex-
posed an underlying bias in a commonly used publicly available
brain tumour MRI dataset, and proposed that this is due to im-
plicit radiologist input in the selection of the 2D slices. In the
KDD CUP breast cancer identification challenge, Perlich etal.
[20] found that the patient IDs (which had not been removed
from the data) were highly correlated with the malignancy of
the patients’ tumours. Several recent studies [21, 22] have re-
vealed biases in datasets designed for COVID-19 identification
from X-ray images, which stem from the inclusion of positive
and negative images obtained from distinct sources. The bi-
ases described in the above-mentioned studies can lead machine
learning models to take a “shortcut” and address a significantly
easier task.

3. Unveiling the Clever Hans effect
3.1. Data
In addition to employing speech recordings from the Pitt cor-
pus, we also utilized Mandarin speech samples from iFLYTEK,
as well as speech samples from ADReSS and ADReSSo, for
comparative analysis.

3.1.1. Data from the original Pitt corpus
We selected 255 speech samples from 168 probable or possi-
ble participants and 242 speech samples from 99 HC partic-
ipants. In addition to the Pitt corpus original (Pco, original
speech) dataset, based on the timestamp information in manual
transcripts of the corresponding speech recordings, we also de-
rived these three datasets: Pitt corpus subject (Pcsu, containing
only subject speech), Pitt corpus silence (Pcsi, containing only
silent speech), and Pitt corpus interviewer (Pci, containing only
interviewer speech). Given that a certain participant may have
multiple corresponding speech samples, we randomly selected
one of them to ensure that speech samples from a specific par-
ticipant do not simultaneously appear in both the training and
test datasets.

3.1.2. Data from a Mandarin AD dataset
The Mandarin data utilized in this paper is sourced from iFLY-
TEK, where subjects were recruited from the Department of
Neurology and the Department of Memory Clinic of Shanghai
Tongji Hospital [23, 24, 25] and were instructed to undertake
the same picture description task mentioned earlier. We selected
120 AD speech samples and 173 HC speech samples. Similar
to Section 3.1.1, we obtained four datasets: Mandarin origi-
nal (Mo), Mandarin subject (Msu), Mandarin silence (Msi), and
Mandarin interviewer (Mi). Each speech sample corresponds to
a unique participant.

3.1.3. Data from the ADReSS and ADReSSo challenges
ADReSS and ADReSSo challenges were hosted by Interspeech
2020 [9] and Interspeech 2021 [10] conferences respectively.
Both challenge datasets are in English and underwent acoustic
enhancement through noise removal and audio volume normal-
ization. The ADReSS dataset contains 78 AD speech samples
and 78 HC speech samples respectively. The ADReSSo dataset
contains 122 AD speech samples and 115 HC speech samples.
In addition to the ADReSS original (Ao) and ADReSSo orig-
inal (Aoo) datasets, we also derived ADReSS silence (As) and
ADReSSo silence (Aos) datasets using the pyannote1 voice ac-
tivity detection (VAD) tools [26], since the timestamp informa-
tion provided by these two challenge datasets does not include
silent intervals.

3.2. Fine-tuning wav2vec 2.0 for AD detecion
Wav2vec 2.0 is a framework for self-supervised learning of
speech representations using contrastive loss [27]. In previous
work [28], we had demonstrated the effectiveness of fine-tuning
wav2vec 2.0 for AD detection. In this paper, we fine-tuned the
wav2vec 2.0 models “facebook/wav2vec2-large-xlsr-53” and
“wbbbbb/wav2vec2-large-chinese-zh-cn” with a sequence clas-
sification head on top (a linear layer with the sigmoid activation
function over the average pooled output) on English and Man-
darin speech data respectively. The models are available in the
HuggingFace’s Transformers library23. We used 5-fold cross-

1https://github.com/pyannote/pyannote-audio
2https://huggingface.co/facebook/wav2vec2-large-xlsr-53
3https://huggingface.co/wbbbbb/wav2vec2-large-chinese-zh-cn



Table 3: The AD detection accuracy of using different datasets
to fine-tune wav2vec 2.0 models respectively.

Dataset Different
subdataset

Number of
training/test samples Accuacy(%)

Pitt corpus
Pco 204/51 97.2
Pcsu 124/31 90.3
Pcsi 208/52 98.9

Mandarin
Mo 232/58 81
Msu 136/34 73.5
Msi 52/13 57.3

ADReSS Ao 112/28 80.7
As 120/30 56.7

ADReSSo Aoo 176/44 77.7
Aos 188/47 61.3

validation to evaluate the models.
For fine-tuning the wav2vec 2.0 models, we set the batch

size to 1, the gradient accumulation steps to 4, the number of
training epochs to 15, the learning rate to 3×10−5, the warmup
ratio to 0.1, and the loss function was cross-entropy. we em-
ployed the Transformers.Trainer as the optimizer. We converted
the audio file format from mp3 to wav and converted the audio
from stereo to mono, along with downsampling the audio data
from 44.1kHz to 16kHz.

3.3. Results
The following three experiments progressively introduce how
we unveil the Clever Hans effect.

Initially, we treated the Pitt corpus as a normal dataset for
AD detection research. We used Pco, Pcsu, Mo, Msu, Ao, Aoo
to fine-tune the wav2vec 2.0 models respectively. Only speech
recordings with a duration longer than 35 seconds were retained
in the datasets, and only the first 35 seconds were used for fine-
tuning. The results are shown in the corresponding rows of Ta-
ble 3. It can be seen that the accuracy of Pitt corpus is much
higher than that of the other ones. Specifically, the classification
accuracy of Pco is much higher than that of the two challenge
datasets Ao (80.7%), Aoo (77.7%) and the Mandarin dataset Mo
(81%) and it is close to 100% (97.2%), a result that is worth
pondering, since it should be comparable to the performance on
Ao and Aoo. Considering the above results, we initially suspect
that the speech recordings in the Pitt corpus are interfered by
some factors.

Next, for proving that the Pitt corpus indeed has prob-
lems, we conducted the second experiment. We fine-tuned the
wav2vec 2.0 models using the first 85 seconds of each train-
ing sample in the two datasets, Pcsu and Msu, respectively,
and conducted the test on the first 85 seconds of each speech
sample from Pci and Mi datasets, respectively. The label of
each speech sample in Pci and Mi is the same as the subject
interviewed by the corresponding interviewer. The results are
shown in Table 4. The test performance on the Pci dataset is an
astonishing 83.1%, a figure that seems unbelievable given that
the model, trained exclusively on subjects’ speech, theoretically
lacks the ability to identify a subject’s AD based solely on the
interviewer’s speech. The test performance on the Mi dataset
is relatively low, only 64.1%, which is normal. Based on the
above results, we can confirm that the Pitt corpus is definitely
influenced by certain factors.

Then, in order to further analyze which specific factors in-

Table 4: The AD detection accuracy of the wav2vec 2.0 models
fine-tuned with only subject speech on only subject speech or
only interviewer speech respectively.

Training Set Test Set Accuacy(%)

Pcsu Pcsu 98.1
Pci 83.1

Msu Msu 84.4
Mi 64.1

terfere with the Pitt corpus , we attempted the third experiment.
We used the first 35 seconds of each speech sample from Pcsi,
As, Aos, and Msi to fine-tune the wav2vec 2.0 models, respec-
tively. We didn’t use the duration information of the silent seg-
ments, instead, all silent segments of each original speech sam-
ple were concatenated into one piece as input for fine-tuning.
The label for the silence piece is the same as the correspond-
ing subject. The results are shown in the corresponding rows of
Table 3. It can be seen that the performance on Pcsi can reach
98.9%, which is astonishing. On the contrary, the accuracy on
As (56.7%) and Aos (61.3%) is much lower, and the accuracy on
Msi (57.3%) is almost random guessing, as what we can expect.
These results suggest that the audio recordings in Pitt corpus are
interfered by environmental factors such as background noise.
The models learned to capture these spurious features and cor-
relations, leading to their high performance.

4. Validating the Clever Hans effect
4.1. Classification based on hand-crafted and wav2vec 2.0
features
To validate the bias of the recording environment in speech sam-
ples from the Pitt corpus, we employed the openSMILE toolkit
[29] to extract the ComParE 2016 features [30] from speech
recordings containing only silence, serving as our low-level
acoustic features. ComParE 2016 is the largest feature set (6373
dimensions) in the toolkit and has been used for AD detection
[10, 28, 14]. We utilized XGBoost, GBDT, AdaBoost classi-
fiers, and their majority voting, as provided by the scikit-learn
package, to conduct 5-fold cross-validation on the aforemen-
tioned features for both the English silent speech dataset from
the Pitt corpus and Mandarin silent speech dataset. Likewise,
these classifiers have also been successfully applied to AD de-
tection [28, 31]. In addition, features from the last hidden layer
of the wav2vec 2.0 model fine-tuned with the English silent
speech dataset (Pcsi) were also utilized for building classifiers.
Both the original 1024-dimensional features and dimensionally
reduced ones were explored. The reduction was achieved to 10
and 5 dimensions using Principal Component Analysis (PCA)
from the scikit-learn package.

We used the aforementioned methods to study Pcsi and Msi
to validate our hypothesis, by building classifiers on the Com-
ParE 2016 feature set for these two datasets. Additionally, we
explored the 1024-dimensional features generated by the fine-
tuned wav2vec 2.0 model with the Pcsi dataset, as well as the

Table 5: AD detection accuracy (%) of each machine learning
classifier on the ComParE 2016 feature set of the Pcsi and Msi
datasets.

Dataset XGBoost GBDT AdaBoost Voting

Pcsi 83.8 80.1 87.6 80.8
Msi 49.3 50.7 55.5 55.2



Table 6: AD detection accuracy (%) of each machine learning
classifier on the features generated by the fine-tuned wav2vec
2.0 model with Pcsi dataset and the fine-tuned wav2vec 2.0
model’s dimensionally reduced features.

Feature set XGBoost GBDT AdaBoost Voting

wav2vec 2.0 (1024) 97.4 98.9 98.5 98.9

PCA(10) 99.2 97.7 97.7 97.7

PCA(5) 99.2 98.1 98.1 98.1

dimensionally reduced features (10 dimensions and 5 dimen-
sions) of the fine-tuned wav2vec 2.0 model. The results are
shown in Table 5 and Table 6. It can be observed that Ad-
aBoost classifier can still achieve a high AD detection accu-
racy of 87.6% based solely on Pcsi’s low-level acoustic fea-
tures ComParE 2016, while the performance of each classifier
on Msi’s ComParE 2016 is only about 50%. Moreover, whether
it is on the original features (1024 dimensions) of the fine-tuned
wav2vec 2.0 model with Pcsi or on the features after dimension-
ality reduction, we can achieve an unbelievable nearly 100%
accuracy on the Pcsi dataset, which contain only silences of
the Pitt corpus. These results confirm an underlying bias in the
speech recordings produced by the picture description task in
the Pitt corpus, which is caused by interference from environ-
mental factors such as background noise. Studies using acous-
tic features extracted from the original speech recordings of this
dataset for AD detection will be affected by this bias.

Figure 2 depicts the spectrograms of two randomly selected
silent segments (AD and HC) from Pcsi. We can easily distin-
guish between AD and HC based on the two segments. This
observation is consistent with the point made above.

4.2. Results from using preprocessed speech recordings
In order to mitigate the impact of the bias, we preprocessed the
speech recordings before employing machine learning methods
on the datasets. We utilized noisereduce package4 to reduce sta-
tionary noise [32]. The package relies on a method called “spec-
tral gating” which is a form of Noise Gate. It works by comput-
ing a spectrogram of a signal (and optionally a noise signal) and
estimating a noise threshold (or gate) for each frequency band
of that signal/noise. That threshold is used to compute a mask,
which gates noise below the frequency-varying threshold. For
stationary noise reduction, it should keep the estimated noise
threshold at the same level across the whole signal. We also
utilized the “AudioSegment” and “effects” methods of pydub

Figure 2: Spectrograms of (a) an AD speech sample and (b) an
HC speech sample in Pcsi.

4https://github.com/timsainb/noisereduce

Table 7: The AD detection accuracy of using preprocessed Pitt
and Mandarin datasets to fine-tune wav2vec 2.0 models. (The
numbers in the parentheses correspond to results obtained using
original Pitt and Mandarin datasets listed in Table 3.)

Dataset Different
subdataset

Number of
training/test samples Accuacy(%)

Pitt corpus
Pco 204/51 82 (97.2)
Pcsu 124/31 77.4 (90.3)
Pcsi 208/52 63.1 (98.9)

Mandarin
Mo 232/58 80.7 (81)
Msu 136/34 74.8 (73.5)
Msi 52/13 58.8 (57.3)

package5 for standard amplitude normalization, which scaled
the whole audio to the max amplitude.

We utilized the methods described above to preprocess the
Pco, Pcsu, Pcsi, Mo, Msu, and Msi, respectively. Subsequently,
under the same experimental parameters configuration as the
unpreprocessed datasets, we employed the preprocessed new
speech datasets to fine-tune the wav2vec 2.0 models respec-
tively. The results are presented in Table 7. Comparing these
outcomes with the corresponding results on original datasets, it
is evident that the performance of the preprocessed Pcsi dataset
has significantly decreased (from 98.9% to 63.1%). This re-
duced performance is now comparable to that of Aos (61.3%).
Moreover, the performance on the preprocessed Msi remains at
the level of random guessing (58.8%). Additionally, the per-
formance on preprocessed Pco and Pcsu is reduced to what we
consider a normal level. Specifically, the accuracy on Pco de-
creases from 97.2% to 82%, which is essentially similar to the
performance on Ao (80.7%). The results further confirm that
speech recordings in the original Pitt corpus are affected by en-
vironmental interference, such as background noise. The per-
formance of preprocessed Mo and Msu is basically equivalent
to or slightly improved compared to that of the original data,
indicating the preprocessing methods do not compromise the
valuable information used to distinguish AD and HC and are
effective for AD detection.

5. Conclusions
In this paper, we expose an underlying bias present in the au-
dio recordings produced from the picture description task of
the Pitt corpus, a commonly used publicly available dataset for
Alzheimer’s Disease detection. Even by solely leveraging the
silent segments of these audio recordings, we can achieve nearly
100% classification accuracy. Through experimental analy-
sis, we propose that this bias is caused by background noise
and other recording environment factors present in the original
speech samples of the dataset. Subsequently, after preprocess-
ing the speech samples with stationary noise removal and stan-
dard amplitude normalization, the experimental results demon-
strate the alleviation of the bias, confirming the effectiveness
of the data preprocessing methods. This study emphasizes the
importance of understanding what the model has learned and
calls for caution in the blind application of black-box automated
models. We hope that researchers will pay attention to the po-
tential dangers caused by spurious features in the data. In future
work, we aim to delve into research on model interpretability,
as well as explore cross-lingual Alzheimer’s Disease detection
utilizing both English and Mandarin datasets.

5https://github.com/jiaaro/pydub
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