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ABSTRACT

Early detection of Alzheimer’s Disease and Related Demen-
tias (ADRD) is critical in treating the progression of the dis-
ease. Previous studies have shown that ADRD can be de-
tected and classified using machine learning models trained
on samples of spontaneous speech. We propose using Voice-
Assistant Systems (VAS), e.g., Amazon Alexa, to monitor and
collect data from at-risk adults, and we show that this data
can be used to achieve functional accuracy in classifying their
cognitive status. In this paper, we develop multiple unique
feature sets from VAS data that can be used in the training of
machine learning models. We then perform multi-class classi-
fication, binary classification, and regression using these fea-
tures on our dataset of older adults with three varying stages
of cognitive decline interacting with VAS. Our results show
that the VAS data can be used to classify Dementia (DM),
Mild Cognitive Impairment (MCI), and Healthy Control (HC)
participants with an accuracy up to 74.7%, and classify be-
tween HC and MCI with accuracy up to 62.8%.

Index Terms— Voice assistant, early detection, cognitive
decline, machine learning, linguistic and acoustic features

1. INTRODUCTION

Alzheimer’s disease and related dementias are characterized
by progressive degeneration of cognitive function, including
the capability of producing coherent speech [1, 2]. Analyzing
spontaneous speech for symptoms of Dementia (DM) is rec-
ognized as an important frontier in early diagnosis of the dis-
ease, as patients usually show a decline in both syntactic and
semantic language faculties as the disease progresses [3, 4].
The progression of Dementia occurs over several stages from
Healthy Control (HC), to Mild Cognitive Impairment (MCI),
to Dementia (DM) with other intermediary stages depending
on the staging scheme. An important functionality of an au-
tomated detection routine would be the classification of a pa-
tient into one of these categories. Classification between HC
and MCI we regard as the most important task, as an early di-

agnosis can allow for proper planning and patient treatment,
which can, in turn, lead to better outcomes [5].

The relatively non-invasive and low-cost nature of speech
recording makes it a promising target for developing auto-
mated detection tools. However, developing such tools re-
quires extensive data of both audio and transcripts. In the
ADReSS challenge, spontaneous speech was induced through
a picture description task, and transcripts of the participant’s
speech were produced manually [6]. This method is imprac-
tical for an automated detection routine. Conversely, speech
induced through interactions with Voice-Assistant Systems
(VAS) is spontaneous and ongoing over time: well suited to
an automated routine. Those who own a VAS device tend to
use it multiple times per day, and a significant proportion of
VAS users are adults over the age of 55 [7].

VAS provides downloadable data of the user’s speech au-
dio and ASR transcripts. This allows for both acoustic and
linguistic features to be examined in combination or individ-
ually and removes the high cost of human transcription. Pre-
vious studies have shown that models trained on acoustic fea-
tures alone can achieve an accuracy of 60% in classification
tasks [6]. However, in the ADReSS challenge, linguistic fea-
tures from transcripts were shown to be more effective than
acoustic features [6, 8, 9, 10]. Therefore, the capability of
analyzing both is an advantage [11, 12].

Our study relies on the transcripts produced by a VAS,
which employs a proprietary Automatic Speech Recognition
(ASR) algorithm. ASR can introduce errors into the gener-
ated transcripts, which are often measured using the Word Er-
ror Rate (WER). When recognizing speech from patients with
cognitive decline, this error rate might be elevated [13]. We
seek to mitigate this effect by using both lexical and semantic
features. The evaluation of VAS transcripts in detecting DM
is a major contribution of our research.

To investigate the early detection of cognitive decline, we
recruited 90 older adult participants to interact with a VAS.
The audio and transcripts of speech from participants to the
VAS were used to implement early detection models of cog-
nitive decline. The contributions of our paper are three-fold.IC
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First, we develop several novel feature extraction routines
that explore lexical and semantic features of transcripts and
pre-trained embedding of audios from VAS interactions.

Second, we evaluate these features and their combinations
via various machine learning algorithms, which we employ
to classify a participant’s Alzheimer’s status and predict their
cognitive scores based on their interactions with a VAS.

Lastly, we show that utilizing a VAS for early detection of
cognitive decline can allow for robust automated procedures
that will be able to identify signs of cognitive decline from
voice interactions between the VAS and the participants.

2. VAS DATA

We recruited 30 HC, 30 MCI, and 30 DM patients, to in-
teract with an Alexa Echo device in a remote/in-person set-
ting. Our remote evaluation was offered due to the COVID-
19 pandemic. Each participant was given a list of 30 Alexa
commands, including “Alexa, what is the weather outside?,”
“Alexa, remember my daughter’s birthday is June first,” and
“Alexa, add oranges and grapes to my shopping list.” These
commands were selected due to their popularity among older
adults. Our study included four other commands that partic-
ipants would say in response to Alexa, including “yes” and
“pause.” This yielded a total of 34 accepted commands. A
complete list of commands and the protocol can be found
in the previous work [7]. We list the demographics in Ta-
ble 1: 30 patients with HC (Montreal Cognitive Assessment
(MoCA) score ≥ 26), 30 patients with MCI (MoCA score <
26) and 30 patients with dementia (based on clinical evalua-
tions). One DM patient failed to produce commands due to
advanced dementia and was excluded, leaving 29 DM partic-
ipants. The number of HC males is slightly more than HC
females, while the numbers of females in both MCI and DM
are slightly more than males. This difference was not statisti-
cally significant [χ2(1) = 1.16, p = .56].

HC MCI DM
Age M F MoCA M F MoCA M F MoCA

[65, 70) 4 6 27.5 5 4 23.33 4 3 14.86
[70, 75) 10 6 27.19 6 8 23.29 1 3 13.5
[75, 80) 3 1 27.25 3 3 23.33 1 2 18
≥80 0 0 NA 0 1 25 7 9 12.94
Total 17 13 27.3 14 16 23.37 13 17 13.97

Table 1: Demographics. Male, Female, Not Available.

3. FEATURES

We extracted features from the VAS data, including Basic,
Distance, and Acoustic features, and their combinations.

3.1. Basic features

We constructed two rudimentary transcript-based features,
called “Basic” features. One basic feature is a binary vari-

able assigned to each prompted command: 1 if a participant
produced a command matching the prompted command, and
0 if a participant did not produce a command matching the
promoted command. The other basic feature we use is the
number of unrecognized commands given by the participant.
An unrecognized command is when the VAS system is trig-
gered to record but cannot understand the input audio. In
this study, we distinguish unmatched commands from unrec-
ognized commands, the former being commands that do not
exactly match a prompted command but still elicit a response
from Alexa, and the latter being unintelligible audio.

3.2. Distance features

We assembled a set of “Distance” features: for each un-
matched command from a participant, we used both lexical
and semantic methods to determine their most likely intended
(or “closest”) command. For lexical distance, we compared
each spoken command to each prompted command and cal-
culated the WER between the two, selecting the lowest WER
command-pair as the intended command. Using the WER
metric for each command, we assembled a new vector, indi-
cating how well the participant performed each command. If
the WER for a spoken command vs. the matched prompted
command was high, this indicated that the participant strug-
gled to produce the command. The WER metric, however,
does not capture the semantic intent of a user’s command. For
example, if a participant wanted to quiet the VAS, they might
say, “Alexa, be quiet,” rather than the prompted command
“Alexa, pause.” As the goal of this study is to evaluate the
eventual use of VAS for in-home monitoring, we wanted to
be able to account for varied inputs that might have the same
meaning as our prompted commands. To incorporate this
intent into our feature set, we employed BERT [14] embed-
dings. An embedding was generated for each command given
by a participant and was matched using cosine similarity to
the closest BERT embedding of a prompted command, giv-
ing us an idea of what the intent of the participant’s utterance
was. We used this metric to construct another vector mea-
suring a participant’s competency in performing commands.
In combination, these features allowed us to extrapolate from
an unmatched command and observe which prompted com-
mand a participant was likely trying to perform. However,
both these Distance features rely on the accuracy of the ASR
transcript, which may contain errors.

3.3. Acoustic features

We consider the following two acoustic features:
eGeMAPS: eGeMAPS is an acoustic feature set that was

developed for and has been widely used in voice research
and computing applications [15]. We extracted the 88 fea-
tures specified - using the OpenSmile python package and
eGeMAPS v02 - from the audio commands.

HuBERT: Transfer learning focuses on storing knowl-
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edge gained from an easy-to-obtain large-sized dataset from
a general task and applying the knowledge to a downstream
task where the data is limited. To extract embeddings from
our audio recordings, we adopted HuBERT as a pre-trained
model [16]. HuBERT is the state-of-the-art automatic speech
recognition model. It was trained on a large-scale dataset Lib-
riSpeech [17] and was fine-tuned on the Librilight splits [18].
We envision the knowledge of the pre-trained HuBERT model
will help extract useful features from the audio commands.

3.4. Feature sets

Using our basic, distance, and acoustic features, we assem-
bled three more feature sets as combinations of the existing
features: FS1 (Basic + Distance), FS2 (Basic + Distance +
eGeMAPS), and FS3 (Basic + Distance + HuBERT).

4. MODELS

Model choices for this research were informed by the models
selected for use in the ADReSS Challenge. For the tasks of
classification, each feature set in our study was classified us-
ing 5 different models: Decision Tree (DT), Linear Discrimi-
nant Analysis (LDA), Linear Support Vector Machine (SVM),
K Nearest Neighbors (KNN), and Random Forest (RF). In
addition to the 5 general machine learning models, we em-
ployed TPOT, an auto-Machine-Learning (ML) algorithm, to
create uniquely tuned models for each feature set [19]. Be-
cause TPOT searches many pipelines for the most optimal
ML model, it is necessary to specify a maximum time limit
on model searching. TPOT models were each fitted to feature
sets for 60 minutes. Despite standardized training time, the
models produced by TPOT are arrived at through a random-
ized search, and are therefore not replicable except with the
exact model code [19]. We built multi-class models for DM,
MCI, and HC classes. Each class’s chance level is 0.33.

We also created three binary classification tasks to predict
between DM vs. HC, DM vs. MCI, and MCI vs. HC. With
seven feature sets, three classification tasks per feature set,
and five models per classification task, we ran a total of 105
binary classifications. Each class’s chance level is 0.5.

Using a similar approach, we built regression models to
predict an MoCA score. MoCA ranges from 0 - 30, with a
lower score indicating more cognitive impairment. Three dif-
ferent regression methods were used: Linear Ridge Regres-
sion (LRR), DT, and SVM. We first used these methods with
default hyperparameters and then used TPOT to optimize a
model for each regression feature set.

5. EVALUATION

Evaluation settings. Evaluation of all classification models
was conducted using stratified K-Fold cross-validation (k=10)
and 10 repetitions per feature set for a total of 100 scoring tri-
als per model. Model-specific accuracy is reported as the av-

erage of these trials. Regression models were evaluated using
the same K-Fold cross-validation strategy. We averaged all
model-specific trials to report the average Root-Mean-Square
Error (RMSE) of MoCA scores.

Evaluation results. Figure 1a displays the average ac-
curacy of our multi-class classification models. We observed
a higher accuracy for the Distance features at 62.3% when
compared to the Basic features at 57.8%. Further, we can see
that FS1 - the combination of Basic and Distance features -
produced the highest overall accuracy at 64.2%. This far ex-
ceeds the chance level of 33%. Of the default models, RF
achieved the highest average accuracy across all feature sets,
at 62.4%, and achieved the highest accuracy using FS3, at
73.4%. FS3 includes Basic, Distance, and HuBERT features,
confirming the effectiveness of the newly developed Distance
features and features from pre-trained models. We show the
confusion matrix for this model in Figure 1b, which confirms
the model was primarily confused between MCI and HC.

Optimized pipelines generated by TPOT achieve even
higher accuracy for each feature set. TPOT models achieved
the highest multi-class accuracy at 74.7% using FS1.

Figure 1a also includes the evaluation results of the re-
gression models. The feature set that produced the lowest
average RMSE using a default model was FS3 (4.81). FS3
also contained the lowest average RMSE for a default model
(LRR, 4.28). TPOT regressors achieved lower RMSE across
most models, with the exception of FS3. A TPOT model
trained on HuBERT features achieved the overall lowest
RMSE of 3.95.

Table 2 displays the average accuracy of our binary clas-
sification models. Classifications between DM and HC and
between DM and MCI were robust, but confusion between
HC and MCI lowered the accuracy, nearly reaching 0.5.

DM vs. HC. FS3 produces the highest accuracy with de-
fault models in this task (96.5%), slightly higher than the Ba-
sic features (96.2%). The TPOT models (96.7%) marginally
outperformed the default models when trained on FS3. High
classification accuracy between these two classes is due to the
significant difference in matched and recognized commands.

DM vs. MCI. FS3 produces the highest accuracy on de-
fault models (97.5%). The Distance features outperformed
the Basic, confirming the effectiveness of lexical and seman-
tic features. The TPOT model achieved 98.3% on FS3.

MCI vs. HC. The RF model trained on HuBERT fea-
tures produced the highest accuracy at 62.8%. HuBERT fea-
tures also produced the highest average accuracy at 59.4%.
This shows the effectiveness of acoustic features from pre-
trained models in the early detection of cognitive decline.
Our TPOT model (59.2%) trained on HuBERT features per-
formed marginally worse than the average of default HuBERT
models. Linguistic features might not help in our evaluation,
as most HC and MCI finished all 30 commands correctly.
However, we observed that most classifiers produce about the
chance level, confirming the difficulties of the early detection.
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Multi-class Classification DM vs. MCI vs. HC Regression
Features DT LDA SVM KNN RF mean TPOT DT SVM LRR mean TPOT
Basic 0.606 0.675 0.574 0.517 0.519 0.578 0.601 5.34 5.35 4.49 5.06 4.30
Distance 0.715 0.572 0.661 0.506 0.662 0.623 0.744 5.03 5.08 4.39 4.83 3.99
Acoustic 0.443 0.483 0.340 0.371 0.529 0.433 0.437 6.31 6.69 6.30 6.43 4.85
HuBERT 0.464 0.619 0.586 0.517 0.618 0.561 0.644 6.13 6.58 4.40 5.70 3.95
FS1 0.684 0.685 0.697 0.494 0.652 0.642 0.747 5.41 5.03 4.34 4.93 4.03
FS2 0.632 0.531 0.340 0.428 0.657 0.518 0.613 5.81 6.68 6.28 6.26 4.58
FS3 0.683 0.560 0.697 0.517 0.734 0.638 0.697 5.19 4.95 4.28 4.81 5.16
mean 0.604 0.589 0.549 0.479 0.624 5.60 5.77 4.93

(a) Evaluation results of multi-class classification and regression models (b) FS 3, RF model

Fig. 1: Evaluation results of multi-class classification and regression models and confusion matrix

DM vs. HC DM vs. MCI MCI vs. HC
Feature set DT LDA SVM KNN RF mean DT LDA SVM KNN RF mean DT LDA SVM KNN RF mean
Basic 0.950 0.913 0.983 0.983 0.983 0.962 0.917 0.883 0.967 0.900 0.958 0.925 0.405 0.517 0.467 0.400 0.393 0.436
Distance 0.970 0.817 0.967 0.983 0.982 0.944 0.981 0.867 0.983 0.983 0.983 0.959 0.575 0.533 0.500 0.350 0.478 0.487
eGeMAPS 0.781 0.797 0.678 0.710 0.863 0.766 0.800 0.880 0.565 0.610 0.823 0.736 0.373 0.350 0.493 0.483 0.438 0.427
HuBERT 0.722 0.933 0.767 0.750 0.782 0.791 0.728 0.900 0.783 0.797 0.795 0.801 0.593 0.600 0.617 0.533 0.628 0.594
FS1 0.953 0.847 0.967 0.983 0.983 0.947 0.981 0.863 0.983 0.983 0.983 0.959 0.567 0.467 0.467 0.300 0.468 0.454
FS2 0.958 0.967 0.966 0.797 0.983 0.934 0.979 0.933 0.942 0.727 0.983 0.913 0.370 0.400 0.488 0.533 0.427 0.444
FS3 0.955 0.950 0.967 0.983 0.970 0.965 0.979 0.983 0.983 0.983 0.945 0.975 0.597 0.550 0.477 0.367 0.615 0.521
mean 0.898 0.889 0.899 0.884 0.935 0.909 0.901 0.887 0.855 0.924 0.497 0.488 0.501 0.424 0.492

1DM vs. HC FS3 TPOT accuracy = 0.967, 2 DM vs. MCI FS3 TPOT accuracy = 0.983, 3 MCI vs. HC HuBERT TPOT accuracy = 0.592.

Table 2: Evaluation results of binary classification models

6. DISCUSSION

Our data from older adults interacting with a VAS has been
evaluated for the first time to classify DM, MCI, and HC.
Previous evaluations classified MCI vs. HC using a smaller
dataset [7]. Major contributions of our paper include showing
the high accuracy of classifying DM patients, and confirming
the importance of acoustic features in early detection.

The most important decision boundary for our models is
between MCI and HC. The confusion matrix shown in Fig-
ure 1b indicates that the primary source of error in our multi-
class classification models comes from the incorrect classi-
fication of MCI and HC. Our binary classification models
also struggle in distinguishing MCI and HC. One of the rea-
sons is the design of our 30-command task, where participants
were given prompted commands. We observed that both MCI
and HC could correctly finish the task easily by reading the
commands. We conclude that acoustic features will be more
important in this task than transcript-based features. Accord-
ingly, we observed that the acoustic features from the pre-
trained HuBERT model achieved the highest accuracy in bi-
nary classification at 59.4% and confirmed the importance of
acoustic features in the early detection of cognitive decline.
We are currently experimenting with a new 30-intent task in
which participants will not be provided with prompted com-
mands but keywords to fulfill intents. In addition, we are col-
lecting longitudinal VAS data from participants’ home, where
participants will speak commands based on their free will.

Regression results are encouraging, as the RMSE scores
are low. However, while MoCA is useful in helping to iden-

tify HC, it does not necessarily indicate a diagnosis of either
DM or MCI. Some participants had MoCA scores of 23 and
yet were suffering from DM, while others who had MCI had
MoCA scores of as low as 17. Our regression models might
accurately predict the MoCA score, but this score might not
directly confer DM or MCI.

7. CONCLUSION

In this paper, we evaluate the ability of a 30-command task us-
ing VAS for early detection of cognitive decline. Our features
and models perform extremely well in classifying DM pa-
tients from MCI and HC. Our multi-class classifier achieved
74.7% accuracy. In classifying MCI and HC patients, our
feature sets achieved a maximum accuracy of 62.8%. While
MCI and HC both successfully finish the task with quality
transcripts, acoustic features of their speech extracted via the
pre-trained HuBERT model play an important role in the early
detection of cognitive decline. These results are promising
and indicate that with further experiments and development,
VAS could become an effective, passive, and low-cost tool to
monitor patients for early signs of cognitive decline.
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chies, “Spontaneous speech of patients with dementia
of the alzheimer type and mild cognitive impairment,”
International psychogeriatrics, vol. 13, no. 3, pp. 289–
298, 2001.

[2] Michael A DeTure and Dennis W Dickson, “The
neuropathological diagnosis of alzheimer’s disease,”
Molecular neurodegeneration, vol. 14, no. 1, pp. 1–18,
2019.

[3] Blanka Klimova, Petra Maresova, Martin Valis, Jakub
Hort, and Kamil Kuca, “Alzheimer’s disease and lan-
guage impairments: social intervention and medical
treatment,” Clinical interventions in aging, vol. 10, pp.
1401, 2015.

[4] Flavio Bertini, Davide Allevi, Gianluca Lutero, Danilo
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